<cite id="hxvfr"><video id="hxvfr"><thead id="hxvfr"></thead></video></cite><var id="hxvfr"></var>
<menuitem id="hxvfr"><strike id="hxvfr"></strike></menuitem><var id="hxvfr"></var>
<listing id="hxvfr"></listing>
<cite id="hxvfr"><video id="hxvfr"><thead id="hxvfr"></thead></video></cite>
<var id="hxvfr"><video id="hxvfr"></video></var>
<cite id="hxvfr"><video id="hxvfr"><thead id="hxvfr"></thead></video></cite>
<var id="hxvfr"></var>
<cite id="hxvfr"><video id="hxvfr"><thead id="hxvfr"></thead></video></cite>
<var id="hxvfr"></var>
<cite id="hxvfr"><video id="hxvfr"></video></cite>

Syntheses, Crystal Structures, Luminescence and Catalytic Activity of Manganese(Ⅱ) and Cadmium(Ⅱ) Coordination Polymers Based on 2, 3-Dihydroxy-terephthalic Acid

Yu LI Ying-Fen ZHUANG Yan-Lai ZHANG An-Sheng FENG Xun-Zhong ZOU

Citation:  Yu LI, Ying-Fen ZHUANG, Yan-Lai ZHANG, An-Sheng FENG, Xun-Zhong ZOU. Syntheses, Crystal Structures, Luminescence and Catalytic Activity of Manganese(Ⅱ) and Cadmium(Ⅱ) Coordination Polymers Based on 2, 3-Dihydroxy-terephthalic Acid[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(6): 1135-1142. doi: 10.11862/CJIC.2021.132 shu

由2, 3-二羥基-對苯二甲酸配體構筑的錳(Ⅱ)和鎘(Ⅱ)配位聚合物的合成、晶體結構、熒光及催化性質

    通訊作者: 鄒訓重, 2017018009@gdip.edu.cn
  • 基金項目:

    廣州市科技計劃項目 201904010381

    廣州市科技計劃項目 201804010499

    廣東省教育廳青年人才項目 2018GkQNCX033

摘要: 采用水熱方法,用2,3-二羥基-對苯二甲酸配體(H4DTA)和2,2'-聯吡啶(bipy)分別與MnCl2·4H2O和CdCl2·H2O反應,合成了2個三維配位聚合物[M(μ4-H2DTA)(bipy)]n(M=Mn(1)、Cd(2)),并對其結構、熒光和催化性質進行了研究。單晶結構分析結果表明2個配合物同構,均屬于正交晶系,Pnna空間群。配合物12都具有三維框架結構。另外,研究了2個配合物的熒光和催化性質。研究表明,配合物1在硅腈化反應中表現出較高的催化活性。

English

  • The design of functional coordination polymers (CPs) turned to be a hot research topic[1-3], especially considering a huge diversity of potential applications of such complexes and derived materials in gas storage and separation[4-6], catalysis[7-10], molecular magnetism[11-12], photochemistry[13-15], and selective sensing[16-18]. Although the assembly of CPs may depend on many parameters (e. g., types of metal ions[10-11], linkers[16, 18], supporting ligands[19-20], solvent[21-22], molar ratios of reagents[23-25] and temperature conditions[26-27]), the nature of metal ions and organic linkers are undoubtedly the key factors that usually define the structures and functional properties of the obtained complexes. Aromatic carboxylic acids containing several COOH functionalities represent the most populated family of linkers in the research on CPs, especially given their availability and reasonable cost, thermal stability, possibility of further functionalization and multitude of coordination modes[22-23, 28-29].

    In particular, terephthalic acid is one of the sim-plest and common building blocks that is widely used for the synthesis of different CPs and MOFs (metal-organic frameworks) [30-33]. However, the functionalized terephthalate ligands remain significantly less investigated[30]. For example, an introduction of two hydroxy substituents into terephthalic acid may well affect its coordination behavior and structures of the resulting complexes. Given an unexplored coordination chemistry of 2, 3-dihydroxy-terephthalic acid[34-35], the main aim of the present work consisted in widening the family of metal(Ⅱ) coordination polymers with this dicarboxylate linker and searching for potential catalytic applications of the obtained complexes.

    Herein, we report the syntheses, crystal structures, luminescent and catalytic properties of two Mn(Ⅱ) and Cd(Ⅱ) coordination polymers constructed from the 2, 3-dihydroxy-terephthalic acid.

    All chemicals and solvents were of AR grade and used without further purification. Carbon, hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectrum was recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer. Thermogravimetric analysis (TGA) data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃ ·min-1. Powder Xray diffraction patterns (PXRD) were measured on a Rigaku-Dmax 2400 diffractometer using Cu radiation (λ = 0.154 06 nm). The X-ray tube was operated at 40 kV and 40 mA, and the data collection range was between 5° and 45°. Excitation and emission spectra were recorded on an Edinburgh FLS920 fluorescence spectrometer using the solid samples at room temperature. Solution 1H NMR spectra were recorded on a JNM ECS 400M spectrometer.

    Amixture of MCl2·xH2O (x=4 for 1 and x=1 for 2; 0.20 mmol), H4DTA (0.040 g, 0.20 mmol), bipy (0.031 g, 0.20 mmol), NaOH (0.016 g, 0.40 mmol), and H2O (10 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 ℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h-1. Yellow (1) or colourless (2) block-shaped crystals were isolated manually, and washed with distilled water. Yield: 51% for 1 and 42% for 2 (based on H4DTA). Anal. Calcd. for C18H12MnN2O6 (1, %): C 53.09, H 2.97, N 6.88; Found(%): C 53.01, H 2.99, N 6.83. IR (KBr, cm-1): 1 638w, 1 594s, 1 474m, 1 441m, 1 388s, 1 330m, 1 260m, 1 222w, 1 132w, 1 062w, 1 013w, 852w, 835w, 810m, 764m, 736w, 646w. Anal. Calcd. for C18H12CdN2O6 (2, %): C 46.52, H 2.60, N 6.03; Found (%): C 46.41, H 2.58, N 6.06. IR (KBr, cm-1): 1 631w, 1 594s, 1 474m, 1 441m, 1 383s, 1 330m, 1 251m, 1 222w, 1 132w, 1 062w, 1 013w, 860w, 811m, 770m, 736w, 649w.

    The complexes are insoluble in water and common organic solvents, such as methanol, ethanol, acetone and DMF.

    Two single crystals with dimensions of 0.25 mm× 0.23 mm×0.22 mm (1) and 0.23 mm×0.22 mm×0.21 am(2) were collected at 293(2) K on a Bruker SMART APEX Ⅱ CCD diffractometer with Cu radiation (λ= 0.154 178 nm). The structures were solved by direct methods and refined by full matrix least-square on F2 using the SHELXTL-2014 program[36]. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were positioned geometrically and refined using a riding model. A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1. The selected bond lengths and angles for complexes 1 and 2 are listed in Table 2.

    Table 1

    Table 1.  Crystal data for complexes 1 and 2
    下載: 導出CSV
    Complex 1 2
    Chemical formula C18H12MnN2O6 C18H12CdN2O6
    Molecular weight 407.24 464.70
    Crystal system Orthorhombic Orthorhombic
    Space group Pnna Pnna
    a/nm 0.964 95(4) 0.976 18(3)
    b/nm 1.692 31(8) 1.685 18(4)
    c/nm 1.024 19(5) 1.042 57(3)
    V/nm3 1.672 51(13) 1.715 06(9)
    Z 4 4
    F(000) 828 920
    θ range for data collection/(°) 5.048~69.827 4.988~66.524
    Limiting indices -11 ≤ h ≤ 9, -20 ≤ k ≤ 18, -7 ≤ l ≤ 12 -7 ≤ h ≤ 11, -20 ≤ k ≤ 18, -12 ≤ l ≤ 10
    Reflection collected, unique (Rint) 5 632, 1 573 (0.068 9) 5 351, 1 494 (0.042 2)
    Dc/(g·cm-3) 1.617 1.800
    μ/mm-1 6.791 10.564
    Data, restraint, parameter 1 573, 0, 124 1 494, 0, 124
    Goodness-of-fit on F2 1.049 1.021
    Final R indices [I≥2σ(I)] R1, wR2 0.046 7, 0.097 9 0.047 5, 0.120 4
    R indices (all data) R1, wR2 0.084 9, 0.107 5 0.051 8, 0.127 3
    Largest diff. peak and hole/(e·nm-3) 333 and -433 929 and -3 169

    Table 2

    Table 2.  Selected bond distances (nm) and bond angles (°) for complexes 1 and 2
    下載: 導出CSV
    1
    Mn1—O1 0.213 7(2) Mn1—O1B 0.213 7(2) Mn1—O2C 0.217 8(2)
    Mn1—O2D 0.217 8(2) Mn1—N1 0.229 8(3) Mn1—N1B 0.229 8(3)
    O1—Mn1—O1B 164.71(15) O2D—Mn1—O1B 90.39(9) O2D—Mn1—O1 80.50(9)
    O2D—Mn1—O2C 106.99(14) O1—Mn1—N1 93.79(11) O1—Mn1—N1B 98.68(10)
    O2C—Mn1—N1 91.57(11) O2D—Mn1—N1 160.51(11) N1—Mn1—N1B 70.75(16)
    2
    Cd1—O1 0.225 6(2) Cd1—O1B 0.225 6(2) Cd1—O2C 0.228 8(2)
    Cd1—O2D 0.228 8(2) Cd1—N1 0.234 9(3) Cd1—N1B 0.234 9(3)
    O1—Cd1—O1B 107.74(17) O2D—Cd1—O1B 89.25(10) O2D—Cd1—O1 75.84(9)
    O2D—Cd1—O2C 154.75(14) O1—Cd1—N1 91.97(12) O1—Cd1—N1B 158.64(11)
    O2C—Cd1—N1 96.81(11) O2D—Cd1—N1 103.85(11) N1—Cd1—N1B 70.04(16)
    Symmetry codes: B: -x+1/2, -y+1, z; C: x+1/2, y, -z+1; D: -x, -y+1, -z+1 for 1; B: -x+1/2, -y+1, z; C: x+1/2, y, -z+1; D: -x, -y+1, -z+1 for 2.

    CCDC: 2060258, 1; 2060259, 2.

    In a typical test, a suspension of an aromatic aldehyde (0.50 mmol, 4-nitrobenzaldehyde as a model substrate), trimethylsilyl cyanide (1.0 mmol) and the catalyst (typically, molar fraction=3%) in dichloromethane (2.5 mL) was stirred at 35 ℃. After a desired reaction time, the catalyst was removed by centrifugation, followed by an evaporation of the solvent from the filtrate under reduced pressure to give a crude solid. This was dissolved in CDCl3 and analyzed by 1H NMR spectroscopy for quantification of products (Fig.S1). To perform the recycling experiment, the catalyst was isolated by centrifugation, washed with dichloromethane, dried at room temperature, and reused. The subsequent steps were performed as described above.

    Complexes 1 and 2 are isostructural (Table 1) and the structure of 1 is discussed in detail as an example. Complex 1 reveals a 3D metal-organic framework with the asymmetric unit containing a Mn(Ⅱ) ion (with half occupancy), a half of μ4-H2DTA2- ligand, and a half of bipy moiety. The Mn center is six-coordinated and reveals a octahedral {MnN2O4} environment, which is completed by four carboxylate O atoms from four individual μ4-H2DTA2- blocks and a pair of N atoms from the bipy moiety (Fig. 1). The lengths of Mn—O and Mn—N bonds are 0.213 7(3)~0.217 8(3) nm and 0.229 8(3) nm, respectively; these are within the normal values for related Mn(Ⅱ) derivatives[11, 22, 27]. The H2DTA2- block acts as a μ4-linker via bidentate COO- groups (Scheme 1). The intramolecular hydrogen bond (O3—H3…O2) was found. The μ4-H2DTA2- blocks connect adjacent Mn1 ions to form a 3D metal-organic framework (Fig. 2). This crystal structure features an in-tricate 3D metal-organic net that is built from the 4-connected, topologically distinct Mn1 and μ4-H2DTA2- nodes (Fig. 3). The resulting net can be classified as a binodal 4, 4-connected framework with a pts (PtS, coop-erate) topology and point symbol of (42.84).

    Figure 1

    Figure 1.  Drawing of coordination environment around Mn center in complex 1 with 30% probability thermal ellipsoids

    Hydrogen atoms are omitted for clarity except those bonding to oxygen atoms; Symmetry codes: A: x, -y+1/2, -z+3/2; B: -x+1/2, -y+1, z; C: x+1/2, y, -z+1; D: -x, -y+1, -z+1

    Scheme 1

    Scheme 1.  Coordination mode of H2DTA2- ligand in complex 1

    Figure 2

    Figure 2.  Perspective of 3D metal-organic framework along a axis

    Bipy ligands are omitted for clarity

    Figure 3

    Figure 3.  Topological representation of binodal 4, 4-connected metal-organic framework with a pts topology viewed along a axis

    Green balls: 4-connected Mn1, Gray: centroids of 4-connected μ4-H2DTA2- nodes

    To determine the thermal stability of complexes 1 and 2, their thermal behaviors were investigated under nitrogen atmosphere by TGA. As shown in Fig. 4, both complexes did not contain solvent of crystallization or H2O ligands and remains stable up to 305 and 282 ℃, respectively, followed by a decomposition on further heating.

    Figure 4

    Figure 4.  TGA curves of complexes 1 and 2

    Solid-state emission spectra of H4DTA and complex 2 were measured at room temperature (Fig. 5). The spectrum of H4DTA revealed a weak emission with a maximum at 426 nm (λex=310 nm). In comparison with H4DTA, complex 2 exhibited a more extensive emission at 388 nm (λex=310 nm). These emissions correspond to intraligand π-π * or n-π* transition of H4DTA[11, 22-23]. Enhancement of the luminescence in 2 compared to H 4DTA can be explained by the coordination of ligands to Cd(Ⅱ); the coordination can augment a rigidity of ligand and reduce an energy loss due to radiationless decay[22-23, 37].

    Figure 5

    Figure 5.  Solid-state emission spectra of H4DTA and complex 2 at room temperature

    Given the potential of Mn(Ⅱ) and Cd(Ⅱ) complexes to catalyze the organic reactions[38-40], we explored the application of 1 and 2 as heterogeneous catalysts in the cyanosilylation of 4-nitrobenzaldehyde as a model substrate to give 2-(4-nitrophenyl)-2-((trimethylsilyl)oxy) acetonitrile. Typical tests were carried out by reacting amixture of 4-nitrobenzaldehyde, trimethylsilyl cyanide (TMSCN), and the catalyst in dichloromethane at 35 ℃ (Scheme 2, Table 3). Such effects as reaction time, catalyst loading, solvent composition, catalyst recycling and finally substrate scope were investigated.

    Scheme 2

    Scheme 2.  Catalyzed cyanosilylation of 4-nitrobenzaldehyde (model substrate)

    Table 3

    Table 3.  Catalyzed cyanosilylation of 4-nitrobenzaldehyde with TMSCN
    下載: 導出CSV
    Entry Catalyst Time/h Catalyst dosagea/% Solvent Yieldb/%
    1 1 1 3.0 CH2Cl2 33
    2 1 2 3.0 CH2Cl2 60
    3 1 4 3.0 CH2Cl2 70
    4 1 6 3.0 CH2Cl2 78
    5 1 8 3.0 CH2Cl2 85
    6 1 10 3.0 CH2Cl2 88
    7 1 12 3.0 CH2Cl2 93
    8 2 12 3.0 CH2Cl2 35
    9 1 12 2.0 CH2Cl2 72
    10 1 12 4.0 CH2Cl2 94
    11 1 12 3.0 CH3CN 81
    12 1 12 3.0 THF 71
    13 1 12 3.0 CH3OH 85
    14 1 12 3.0 CH3Cl 87
    15 Blank 12 CH2Cl2 5
    16 MnCl2 12 3.0 CH2Cl2 9
    17 CdCl2 12 3.0 CH2Cl2 6
    18 H3dpna 12 3.0 CH2Cl2 7
    aMolar fraction; b Calculated by 1H NMR spectroscopy: nproduct/naldehyde×100%.

    Upon using complex 1 as the catalyst (Molar fraction: 3%), a high conversion of 93% of 4-nitrobenzaldehyde into 2 -(4-nitrophenyl)-2-((trimethylsilyl)oxy)acetonitrile was reached after 12 h in dichloromethane at 35 ℃ (Table 3, Entry 7). Upon extending the reaction time further to 18 h, only a slight increase in the prod-uct yield to 94% occurred. Moreover, no other products were detected, and the yield of this product was consid-ered to be the conversion of 4-nitrobenzaldehyde (Fig. 6).

    Figure 6

    Figure 6.  PXRD patterns for 1: simulated (red), before (black) and after (blue) catalysis

    We also compared the activities of catalyst 1 in the reactions of other substituted aromatic and aliphatic aldehydes with trimethylsilyl cyanide, and the corresponding cyanohydrin derivatives were produced in yields ranging from 48% to 93% (Table 4). Aryl aldehydes bearing strong electron-withdrawing substituents (e.g., nitro and chloro) exhibited the higher reactivities (Table 4, Entries 2~5), which may be related to an increase in the electrophilicity of the substrate. Aldehydes containing electron-donating proups (e.g., methyl) showed lower reaction yields (Table 4, Entry 7) as expected. An ortho -substituted aldehyde showed lower reactivity, possibly as a result of steric hindrance.

    Table 4

    Table 4.  Cyanosilylation of various aldehydes with TMSCN catalyzed by 1a
    下載: 導出CSV
    Entry Substituted benzaldehyde substrate (R—C6H4CHO) Product yieldb/%
    1 R=H 60
    2 R=2-NO2 81
    3 R=3-NO2 88
    4 R=4-NO2 93
    5 R=4-Cl 63
    6 R=4-OH 54
    7 P=4-CH3 48
    aReaction conditions: aldehyde (0.5 mmol), TMSCN (1.0 mmol), catalyst 1 (Molar fraction: 3.0%) and CH2Cl2 (2.5 mL) at 35 ℃; b Calculated by 1H NMR spectroscopy.

    To examine the stability of 1 in the cyanosilylation reaction, we tested the recyclability of this heterogeneous catalyst. For this purpose, upon completion of a reaction cycle, we separated the catalyst by centrifugation, washed it with CH2Cl2, and dried it at room temperature before its further use. We repeated recycling catalyst 1 and the catalytic system mained the higher activity over at least five consecutive cycles (the yields were 92%, 91%, 89% and 88% for second to fifth run, respectively). According to the PXRD data (Fig. 6), the structure of 1 was essentially preserved after five catalytic cycles.

    A possible catalytic cycle for the cyanosilylation reaction catalyzed by a Mn coordination polymer is proposed in Scheme 3. It can involve dual activation of the carbonyl and TMSCN by the Mn(Ⅱ) centre and a ligated carboxylate group, respectively, followedby the formation of C—C bond leading to cyanohydrin[41-42].

    Scheme 3

    Scheme 3.  Mechanism for Mn-catalyzed cyanosilylation reaction

    In summary, we have successfully synthesized and characterized two new manganese and cadmium complexes by using one unexplored dicarboxylic acid as ligand under hydrothermal condition. Both complexes feature a 3D metal-organic framework structure. Besides, the luminescence and catalytic properties were also investigated and discussed. The results show that complex 1 exhibits a higher catalytic activity in the cyanosilylation at 35 ℃.


    Supporting information is available at http://www.wjhxxb.cn
    #共同第一作者。
    1. [1]

      Batten S R, Neville S M, Turner D R. Coordination Polymers: Design, Analysis and Application. Cambridge: Royal Society of Chemistry, 2009.

    2. [2]

      Morsali A, Hashemi L. Main Group Metal Coordination Polymers: Structures and Nanostructures. Hoboken: John Wiley & Sons, Inc., 2017.

    3. [3]

      Pettinari C, Tǎbǎcaru A, Galli S. Coord. Chem. Rev. , 2016, 307: 1-31 doi: 10.1016/j.ccr.2015.08.005

    4. [4]

      Cheng F J, Li Q Q, Duan J G, Hosono N, Noro S, Krishna R, Lyu H L, Kusaka S, Jin W Q, Kitagawa S. J. Mater. Chem. A, 2017, 5(34): 17874-17880 doi: 10.1039/C7TA02760E

    5. [5]

      Fan W D, Wang X, Xu B, Wang Y T, Liu D D, Zhang M, Shang Y Z, Dai F N, Zhang L L, Sun D F. J. Mater. Chem. A, 2018, 6(47): 24486-24495 doi: 10.1039/C8TA07839D

    6. [6]

      Zheng B S, Luo X, Wang Z X, Zhang S W, Yun R R, Huang L, Zeng W J, Liu W L. Inorg. Chem. Front. , 2018, 5(9): 2355-2363 doi: 10.1039/C8QI00662H

    7. [7]

      Du Y, Yang H S, Wan S, Jin Y H, Zhang W. J. Mater. Chem. A, 2017, 5(19): 9163-9168 doi: 10.1039/C7TA01188A

    8. [8]

      Gu J Z, Wen M, Cai Y, Shi Z F, Nesterov D S, Kirillova M V, Kirillov A M. Inorg. Chem. , 2019, 58(9): 5875-5885 doi: 10.1021/acs.inorgchem.9b00242

    9. [9]

      Gu J Z, Wen M, Cai Y, Shi Z F, Arol A S, Kirillova M V, Kirillov A M. Inorg. Chem. , 2019, 58(4): 2403-2412 doi: 10.1021/acs.inorgchem.8b02926

    10. [10]

      Fernandes T A, Santos C I M, André V, Klak J, Kirillova M V, Kirillov A M. Inorg. Chem. , 2016, 55(1): 125-135 doi: 10.1021/acs.inorgchem.5b01983

    11. [11]

      Gu J Z, Liang X X, Cai Y, Wu J, Shi Z F, Kirillov A M. Dalton Trans. , 2017, 46(33): 10908-10925 doi: 10.1039/C7DT01742A

    12. [12]

      Karabach Y Y, Kirillov A M, Haukka M, Sanchiz J, Kopylovich M N, Pombeiro A J L. Cryst. Growth Des. , 2008, 8(11): 4100-4108 doi: 10.1021/cg8005597

    13. [13]

      Zhao J, Liu B A, Feng Z, Jin D Y, Dang W P, Yang X L, Zhou G J, Wu Z X, Wong W Y. Polym. Chem. , 2017, 8(41): 6368-6377 doi: 10.1039/C7PY01074E

    14. [14]

      Einkauf J D, Clark J M, Paulive A, Tanner G P, de Lill D T. Inorg. Chem. , 2017, 56(10): 5544-5552 doi: 10.1021/acs.inorgchem.6b02838

    15. [15]

      Hasegawa Y, Miura Y, Kitagawa Y, Wada S, Nakanishi T, Fushimi K, Seki T, Ito H, Iwasa T, Taketsugu T, Gon M, Tanaka K, Chujo Y, Hattori S, Karasawa M, Ishii K. Chem. Commun. , 2018, 54(76): 10695-10697 doi: 10.1039/C8CC05147J

    16. [16]

      Mayhugh J T, Niklas J E, Forbes M G, Gorden J D, Gorden A E V. Inorg. Chem. , 2020, 59(14): 9560-9568 doi: 10.1021/acs.inorgchem.0c00439

    17. [17]

      Haldar R, Matsuda R, Kitagawa S, George S J, Maji T K. Angew. Chem. Int. Ed. , 2014, 53(44): 11772-11777 doi: 10.1002/anie.201405619

    18. [18]

      Jaros S W, Sokolnicki J, Woloszyn A, Haukka M, Kirillov A M, Smoleński P. J. Mater. Chem. C, 2018, 6(7): 1670-1678 doi: 10.1039/C7TC03863A

    19. [19]

      Wei N, Zhang M Y, Zhang X N, Li G M, Zhang X D. Cryst. Growth Des. , 2014, 14(6): 3002-3009 doi: 10.1021/cg500286v

    20. [20]

      Bosch M, Sun X, Yuan S, Chen Y P, Wang Q, Wang X, Zhou H C. Eur. J. Inorg. Chem. , 2016(27): 4368-4372

    21. [21]

      Kühne I A, Carter A B, Kostakis G E, Anson C E, Powell A K. Crystals, 2020, 10: 893 doi: 10.3390/cryst10100893

    22. [22]

      Gu J Z, Gao Z Q, Tang Y. Cryst. Growth Des. , 2012, 12(6): 3312-3323 doi: 10.1021/cg300442b

    23. [23]

      Gu J Z, Cui Y H, Wu J, Kirillov A M. RSC Adv. , 2015, 5(96): 78889-78901 doi: 10.1039/C5RA13582F

    24. [24]

      Ye R P, Zhang X, Zhang L, Zhang J, Yao Y G. Cryst. Growth Des. , 2016, 16(7): 4012-4020 doi: 10.1021/acs.cgd.6b00548

    25. [25]

      Hou X Y, Wang X, Li S N, Jiang Y C, Hou M C. Cryst. Growth Des. , 2017, 17(6): 3229-3235 doi: 10.1021/acs.cgd.7b00215

    26. [26]

      鄒訓重, 吳疆, 顧金忠, 趙娜, 馮安生, 黎彧. 無機化學學報, 2019, 35(9): 1705-1711 doi: 10.11862/CJIC.2019.190ZOU X Z, WU J, GU J Z, ZHAO N, FENG A S, LI Y. Chinese J. Inorg. Chem. , 2019, 35(9): 1705-1711 doi: 10.11862/CJIC.2019.190

    27. [27]

      Li Y, Wu J, Gu J Z, Qiu W D, Feng A S. Chin. J. Struct. Chem. , 2020, 39(4): 727-736

    28. [28]

      Arici M, Ye?ilel O Z, Ta? M, Demiral H. Cryst. Growth Des. , 2017, 17(5): 2654-2659 doi: 10.1021/acs.cgd.7b00171

    29. [29]

      Gu J Z, Wen M, Liang X X, Shi Z F, Kirillova M V, Kirillov A M. Crystals, 2018, 8: 83 doi: 10.3390/cryst8020083

    30. [30]

      Groom C R, Bruno I J, Lightfoot M P, Ward S C. Acta Crystallogr. Sect. B, 2016, B72(2): 171-179

    31. [31]

      Logan M W, Lau Y A, Zheng Y, Hall E A, Hettinger M A, Marks R P, Hosler M L, Rossi F M, Yuan Y, Uribe-Romo F J. Catal. Sci. Technol. , 2016, 6(14): 5647-5655 doi: 10.1039/C6CY00054A

    32. [32]

      Mian M R, Afrin U, Fataftah M S, Idrees K B, Islamoglu T, Freedman D E, Farha O K. Inorg. Chem. , 2020, 59(12): 8444-8450 doi: 10.1021/acs.inorgchem.0c00885

    33. [33]

      Kim S N, Lee Y R, Hong S H, Jang M S, Ahn W S. Catal. Today, 2015, 245: 54-60 doi: 10.1016/j.cattod.2014.05.041

    34. [34]

      Lee H G, Jo H, Eom S, Kang D W, Kang M J, Hilgar J, Rinehart J D, Moon D, Hong C S. Cryst. Growth Des. , 2018, 18(6): 3360-3365 doi: 10.1021/acs.cgd.8b00064

    35. [35]

      Fei H, Shin J, Meng Y S, Adelhardt M, Sutter J, Meyer K, Cohen S M. J. Am. Chem. Soc. , 2014, 136(13): 4965-4973 doi: 10.1021/ja411627z

    36. [36]

      Spek A L. Acta Crystallogr. Sect. C, 2015, C71(1): 9-18

    37. [37]

      Gu J Z, Cui Y H, Liang X X, Wu J, Lv D Y, Kirillov A M. Cryst. Growth Des. , 2016, 16(8): 4658-4670 doi: 10.1021/acs.cgd.6b00735

    38. [38]

      Pal S, Maiti S, Nayek H P. Appl. Organomet. Chem. , 2018, 32: e4447 doi: 10.1002/aoc.4447

    39. [39]

      Loukopoulos E, Kostakis G E. J. Coord. Chem. , 2018, 71(3): 371-410 doi: 10.1080/00958972.2018.1439163

    40. [40]

      Hu L, Hao G X, Luo H D, Ke C X, Shi G, Lin J, Lin X M, Qazi U Y, Cai Y P. Cryst. Growth Des. , 2018, 18(5): 2883-2889 doi: 10.1021/acs.cgd.7b01728

    41. [41]

      Karmakar A, Hazra S, da Silva M F C G, Pombeiro A J L. Dalton Trans. , 2015, 44(1): 268-280 doi: 10.1039/C4DT02316A

    42. [42]

      Aguirre-Díaz L M, Iglesias M, Snejko N, Gutiérrez-Puebla E, Monge M á. CrystEngComm, 2013, 15(45): 9562-9571 doi: 10.1039/c3ce41123k

  • Figure 1  Drawing of coordination environment around Mn center in complex 1 with 30% probability thermal ellipsoids

    Hydrogen atoms are omitted for clarity except those bonding to oxygen atoms; Symmetry codes: A: x, -y+1/2, -z+3/2; B: -x+1/2, -y+1, z; C: x+1/2, y, -z+1; D: -x, -y+1, -z+1

    Scheme 1  Coordination mode of H2DTA2- ligand in complex 1

    Figure 2  Perspective of 3D metal-organic framework along a axis

    Bipy ligands are omitted for clarity

    Figure 3  Topological representation of binodal 4, 4-connected metal-organic framework with a pts topology viewed along a axis

    Green balls: 4-connected Mn1, Gray: centroids of 4-connected μ4-H2DTA2- nodes

    Figure 4  TGA curves of complexes 1 and 2

    Figure 5  Solid-state emission spectra of H4DTA and complex 2 at room temperature

    Scheme 2  Catalyzed cyanosilylation of 4-nitrobenzaldehyde (model substrate)

    Figure 6  PXRD patterns for 1: simulated (red), before (black) and after (blue) catalysis

    Scheme 3  Mechanism for Mn-catalyzed cyanosilylation reaction

    Table 1.  Crystal data for complexes 1 and 2

    Complex 1 2
    Chemical formula C18H12MnN2O6 C18H12CdN2O6
    Molecular weight 407.24 464.70
    Crystal system Orthorhombic Orthorhombic
    Space group Pnna Pnna
    a/nm 0.964 95(4) 0.976 18(3)
    b/nm 1.692 31(8) 1.685 18(4)
    c/nm 1.024 19(5) 1.042 57(3)
    V/nm3 1.672 51(13) 1.715 06(9)
    Z 4 4
    F(000) 828 920
    θ range for data collection/(°) 5.048~69.827 4.988~66.524
    Limiting indices -11 ≤ h ≤ 9, -20 ≤ k ≤ 18, -7 ≤ l ≤ 12 -7 ≤ h ≤ 11, -20 ≤ k ≤ 18, -12 ≤ l ≤ 10
    Reflection collected, unique (Rint) 5 632, 1 573 (0.068 9) 5 351, 1 494 (0.042 2)
    Dc/(g·cm-3) 1.617 1.800
    μ/mm-1 6.791 10.564
    Data, restraint, parameter 1 573, 0, 124 1 494, 0, 124
    Goodness-of-fit on F2 1.049 1.021
    Final R indices [I≥2σ(I)] R1, wR2 0.046 7, 0.097 9 0.047 5, 0.120 4
    R indices (all data) R1, wR2 0.084 9, 0.107 5 0.051 8, 0.127 3
    Largest diff. peak and hole/(e·nm-3) 333 and -433 929 and -3 169
    下載: 導出CSV

    Table 2.  Selected bond distances (nm) and bond angles (°) for complexes 1 and 2

    1
    Mn1—O1 0.213 7(2) Mn1—O1B 0.213 7(2) Mn1—O2C 0.217 8(2)
    Mn1—O2D 0.217 8(2) Mn1—N1 0.229 8(3) Mn1—N1B 0.229 8(3)
    O1—Mn1—O1B 164.71(15) O2D—Mn1—O1B 90.39(9) O2D—Mn1—O1 80.50(9)
    O2D—Mn1—O2C 106.99(14) O1—Mn1—N1 93.79(11) O1—Mn1—N1B 98.68(10)
    O2C—Mn1—N1 91.57(11) O2D—Mn1—N1 160.51(11) N1—Mn1—N1B 70.75(16)
    2
    Cd1—O1 0.225 6(2) Cd1—O1B 0.225 6(2) Cd1—O2C 0.228 8(2)
    Cd1—O2D 0.228 8(2) Cd1—N1 0.234 9(3) Cd1—N1B 0.234 9(3)
    O1—Cd1—O1B 107.74(17) O2D—Cd1—O1B 89.25(10) O2D—Cd1—O1 75.84(9)
    O2D—Cd1—O2C 154.75(14) O1—Cd1—N1 91.97(12) O1—Cd1—N1B 158.64(11)
    O2C—Cd1—N1 96.81(11) O2D—Cd1—N1 103.85(11) N1—Cd1—N1B 70.04(16)
    Symmetry codes: B: -x+1/2, -y+1, z; C: x+1/2, y, -z+1; D: -x, -y+1, -z+1 for 1; B: -x+1/2, -y+1, z; C: x+1/2, y, -z+1; D: -x, -y+1, -z+1 for 2.
    下載: 導出CSV

    Table 3.  Catalyzed cyanosilylation of 4-nitrobenzaldehyde with TMSCN

    Entry Catalyst Time/h Catalyst dosagea/% Solvent Yieldb/%
    1 1 1 3.0 CH2Cl2 33
    2 1 2 3.0 CH2Cl2 60
    3 1 4 3.0 CH2Cl2 70
    4 1 6 3.0 CH2Cl2 78
    5 1 8 3.0 CH2Cl2 85
    6 1 10 3.0 CH2Cl2 88
    7 1 12 3.0 CH2Cl2 93
    8 2 12 3.0 CH2Cl2 35
    9 1 12 2.0 CH2Cl2 72
    10 1 12 4.0 CH2Cl2 94
    11 1 12 3.0 CH3CN 81
    12 1 12 3.0 THF 71
    13 1 12 3.0 CH3OH 85
    14 1 12 3.0 CH3Cl 87
    15 Blank 12 CH2Cl2 5
    16 MnCl2 12 3.0 CH2Cl2 9
    17 CdCl2 12 3.0 CH2Cl2 6
    18 H3dpna 12 3.0 CH2Cl2 7
    aMolar fraction; b Calculated by 1H NMR spectroscopy: nproduct/naldehyde×100%.
    下載: 導出CSV

    Table 4.  Cyanosilylation of various aldehydes with TMSCN catalyzed by 1a

    Entry Substituted benzaldehyde substrate (R—C6H4CHO) Product yieldb/%
    1 R=H 60
    2 R=2-NO2 81
    3 R=3-NO2 88
    4 R=4-NO2 93
    5 R=4-Cl 63
    6 R=4-OH 54
    7 P=4-CH3 48
    aReaction conditions: aldehyde (0.5 mmol), TMSCN (1.0 mmol), catalyst 1 (Molar fraction: 3.0%) and CH2Cl2 (2.5 mL) at 35 ℃; b Calculated by 1H NMR spectroscopy.
    下載: 導出CSV
    亚洲AV无码一区二区二三区,亚洲无线码高清在线观看,久无码久无码av无码,亚洲中久无码永久在线观看
  • 加載中
計量
  • PDF下載量:  1
  • 文章訪問數:  84
  • HTML全文瀏覽量:  12
文章相關
  • 發布日期:  2021-06-10
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-03-25
通訊作者: 陳斌, bchen63@163.com
  • 1. 

    沈陽化工大學材料科學與工程學院 沈陽 110142

  1. 本站搜索
  2. 百度學術搜索
  3. 萬方數據庫搜索
  4. CNKI搜索

/

返回文章